

Review Article**Narrative Review: Pharmacogenomics and Personalized Medicine: The Next Frontier in Drug Therapy**

Sampat Singh Tanwar¹, Seema Sharma^{1*}, Satinder Kakar²

¹*Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, Madhya Pradesh, India*

²*Department of Pharmacy, Himachal Institute of Pharmacy, Paonta Sahib, Himachal Pradesh, India*

***Corresponding Author:** Dr. Seema Sharma, Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India, Orcid id: 0009-0003-9641-4127

E-mail: seemasharmapharm@gmail.com

ARTICLE INFO:**Article history:**

Received: 31 December, 2025

Received in revised form: 30 January, 2026

Accepted: 5 February, 2026

Keywords:

Pharmacogenomics; Personalized medicine; Genetic polymorphism; Drug response; Clinical implementation; Precision pharmacotherapy.

ABSTRACT

Pharmacogenomics is the study of genetic variability influencing drug response has transformed modern pharmacotherapy by enabling a shift from empirical, population-based prescribing toward individualized, precision treatment. The rapid progress in genomic sequencing, bioinformatics, and data analytics has uncovered numerous gene–drug interactions influencing pharmacokinetics and pharmacodynamics. Integrating this information into clinical practice represents the essence of personalized medicine. This review provides an updated synthesis of current knowledge on pharmacogenomic principles, clinically actionable gene variants, and their impact on therapeutic decision-making across major disease areas. It further explores technological enablers such as next-generation sequencing (NGS), artificial intelligence (AI) driven data mining, and electronic health record (EHR) integration, alongside implementation barriers in developing and developed health-care systems. Ethical and regulatory considerations, including data privacy, patient consent, and equitable access, are critically evaluated. Despite remarkable progress, translation into routine clinical practice remains inconsistent due to cost, infrastructure, and clinician awareness gaps. Future directions emphasize multi-omics integration, global pharmacogenomic consortia, and policy frameworks to ensure equitable benefits.

Introduction

Modern pharmacotherapy continues to face substantial interindividual variation in both efficacy and toxicity. Evidence suggests that adverse drug reactions (ADRs) contribute to approximately 7 % of hospital admissions globally [1]. Traditional empirical dosing strategies—designed around the “average” patient—often fail to account for the genetic diversity that shapes individual drug response.

Pharmacogenomics (PGx), a discipline integrating genomics and pharmacology, seeks to individualize treatment by associating specific genetic variants with pharmacokinetic and pharmacodynamic outcomes [2]. Following the completion of the Human Genome Project, large-scale sequencing and genome-wide association studies have revealed clinically actionable loci affecting drug-metabolizing enzymes, transporters, and molecular targets [3]. Variants within *CYP450* isoenzymes (e.g., *CYP2C19*, *CYP2D6*), transporters such as *ABCB1*, and receptor genes (e.g., β -adrenergic receptors) collectively contribute to the heterogeneous therapeutic profiles observed in routine clinical practice [4]. The broader concept of personalized or precision medicine incorporates pharmacogenomic data together with environmental, lifestyle, and comorbidity factors to guide optimal therapy [5]. Regulatory bodies including the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have progressively integrated PGx guidance into product labeling; more than 400 approved drugs now contain genomic information relevant to dosing or contraindication [6].

The objectives of this review are therefore to:

- summarize fundamental pharmacogenomic mechanisms underlying drug response
- outline therapeutic areas where clinical translation has occurred

- discuss technological and regulatory enablers of implementation
- highlight remaining barriers and future perspectives for precision pharmacotherapy.

Methodology: Literature Search Strategy

Because this paper is a narrative rather than systematic review, a structured literature-retrieval process was used to ensure breadth and scientific validity. Publications between January 2010 and May 2025 were identified in PubMed, Scopus, and SpringerLink using Boolean combinations of: *pharmacogenomics*, *personalized medicine*, *drug response*, *genetic polymorphism*, *precision pharmacotherapy*, and *clinical implementation*.

Eligibility criteria included English-language, peer-reviewed studies addressing genetic determinants of drug response, translational or clinical applications, emerging technologies, and ethical or policy aspects. Non-peer-reviewed reports, conference abstracts, and isolated case studies without genetic analysis were excluded. Regulatory documents (FDA, EMA) and curated databases—PharmGKB, CPIC, and DPWG—were also reviewed for authoritative recommendations. Approximately 250 records were screened and ~150 references critically synthesized. Quantitative pooling or meta-analysis was not attempted, consistent with narrative methodology [7].

Genetic Determinants of Drug Response

Interindividual variability in pharmacotherapy arises largely from genetic polymorphisms that modify drug metabolism, transport, or receptor sensitivity. These genomic differences include single-nucleotide polymorphisms (SNPs), insertions/deletions, copy-number variants, and epigenetic alterations influencing pharmacokinetic (PK) and pharmacodynamic (PD) processes [8].

Pharmacokinetic Genes

Drug disposition absorption, distribution, metabolism, and excretion is governed by numerous polymorphic enzymes and transporters.

- **Phase I metabolism.** The *CYP450* superfamily catalyzes oxidative reactions for ~75 % of small-molecule drugs. Function-altering variants such as *CYP2D6* 4, 10, and 17 generate poor or ultrarapid-metabolizer phenotypes that profoundly influence antidepressant, β -blocker, and opioid exposure [9]. Similarly, *CYP2C19* loss-of-function alleles (2, 3) impair activation of prodrugs like clopidogrel [10].
- **Phase II metabolism.** Polymorphisms in conjugation enzymes, notably *UGT1A1* 28, reduce glucuronidation of irinotecan, increasing systemic SN-38 levels and neutropenia risk [11].
- **Drug transporters.** Variants in *SLCO1B1* alter hepatic uptake of statins, predisposing carriers of the 5 allele to myopathy [12]. Genotype-guided statin selection mitigates this toxicity [13].

Pharmacodynamic Genes

At the receptor or target level, genetic heterogeneity determines drug sensitivity. *VKORC1* -1639 G>A and *CYP2C9* polymorphisms jointly explain up to 50 % of warfarin dose variability, forming the basis of validated dosing algorithms [14]. The *HLA-B* 57:01 allele predicts abacavir hypersensitivity, now screened routinely before therapy initiation [15]. Additional examples include *HLA-B* 15:02-associated carbamazepine toxicity in Asian populations and *IL28B* variants predicting hepatitis-C antiviral response [16].

Epigenetic and Post-Genomic Regulation

Beyond DNA sequence variation, epigenetic mechanisms DNA methylation, histone acetylation, and microRNA regulation modulate expression of pharmacogenes. These dynamic modifications can be influenced by age, diet, and environmental exposure [17]. "Pharmaco-epigenomics," integrating genomic and epigenomic profiling, is an expanding frontier particularly in oncology, where drug resistance is frequently epigenetically mediated [18].

Clinical Applications of Pharmacogenomics

Translation of pharmacogenomic (PGx) knowledge into therapeutic decision-making has transformed several clinical specialties. Implementation of genotype-guided therapy minimizes adverse drug reactions and enhances drug efficacy, thereby improving cost-effectiveness and patient outcomes [19].

Oncology

Cancer treatment represents the most mature field for pharmacogenomic application because both tumor genomics and host pharmacogenetics affect therapy response.

- **Thiopurine S-methyltransferase (TPMT) and NUDT15** genotypes predict myelosuppression risk during thiopurine therapy for acute lymphoblastic leukemia [20]. CPIC and DPWG guidelines recommend genotype-guided dose reduction.
- **DPYD** loss-of-function alleles (2A, 13, *HapB3*) cause accumulation of 5-fluorouracil and capecitabine,

Table 1: Major Clinically Actionable Gene–Drug Pairs

Gene	Drug(s) Affected	Clinical Consequence	Actionable Recommendation	Reference
<i>CYP2C19</i>	Clopidogrel	Poor metabolism → reduced antiplatelet effect	Consider prasugrel or ticagrelor instead of clopidogrel	[24]
<i>SLCO1B1</i>	Simvastatin	Increased myopathy risk due to decreased hepatic uptake	Use pravastatin or rosuvastatin; lower dose if necessary	[25]
<i>TPMT</i> , <i>NUDT15</i>	Azathioprine, mercaptopurine	6-Myelosuppression from thiopurine accumulation	Reduce dose or use non-thiopurine alternative	[20]
<i>UGT1A1</i>	Irinotecan	Neutropenia due to impaired glucuronidation	Initiate with lower dose or monitor toxicity closely	[23]

producing severe toxicity [21]. Routine screening reduces grade ≥ 3 toxicities by > 50 %.

- Somatic driver mutations (*EGFR*, *ALK*, *BRAF*) direct targeted therapy in non-small-cell lung and colorectal cancers [22].
- *UGT1A1* 28 polymorphism–guided irinotecan dosing and *CYP2D6* metabolizer status–based tamoxifen therapy exemplify host PGx integration in oncology [23].

Cardiology

Genetic diversity influences the efficacy and safety of antiplatelets, anticoagulants, and lipid-lowering drugs.

- *CYP2C19* 2/ 3 alleles impair clopidogrel activation, increasing stent thrombosis risk [24]. Point-of-care testing enables rapid selection of prasugrel or ticagrelor for non-responders.
- *SLCO1B1* 5 carriers have elevated statin plasma levels and myopathy susceptibility; switching to pravastatin or rosuvastatin mitigates this effect [25].
- *VKORC1* and *CYP2C9* genotypes predict warfarin dose requirement, reducing over-anticoagulation events [26].

Psychiatry and Neurology

Psychotropic response variability is a classic PGx issue.

- *CYP2D6* and *CYP2C19* polymorphisms alter serum concentrations of selective serotonin reuptake inhibitors, tricyclic antidepressants, and antipsychotics [27].
- *HTR2A* and *DRD2* receptor variants have been linked to antidepressant non-response and extrapyramidal side effects [28].
- Commercial multigene panels (e.g., GeneSight, CNSDose) increasingly guide antidepressant selection; meta-analyses report improved remission rates but highlight heterogeneity across populations [29].

Infectious Diseases

Pharmacogenomic testing is essential for antiretroviral, antiviral, and antimicrobial safety.

- *HLA-B* 57:01 screening has virtually eliminated abacavir hypersensitivity reactions [30].
- *IL28B* (CC vs TT) polymorphism predicts interferon- α -based therapy response in chronic hepatitis C [31].
- *NAT2* slow acetylator genotype correlates with isoniazid-induced hepatotoxicity in tuberculosis [32].

Pain Management and Anesthesiology

- *CYP2D6* poor metabolizers cannot convert codeine or tramadol into morphine, resulting in inadequate analgesia, whereas ultrarapid metabolizers risk respiratory depression [33].
- *OPRM1* A118G and *COMT* Val158Met variants modulate opioid sensitivity and addiction liability [34].
- Mutations in *RYR1* and *CACNA1S* predispose to malignant hyperthermia, making pre-anesthetic genotyping life-saving [35].

Collectively, these examples demonstrate that pharmacogenomics has transitioned from academic discovery to clinical implementation, supported by strong evidence from CPIC, DPWG, and PharmGKB guidelines [36].

<i>VKORC1, CYP2C9</i>	Warfarin	Over- or under-anticoagulation depending on genotype	Apply genotype-guided dosing algorithms	[26]
<i>HLA-B 57:01</i>	Abacavir	Hypersensitivity reaction (life-threatening)	Avoid abacavir if allele positive	[30]
<i>CYP2D6</i>	Codeine, Tramadol	Poor/ultrarapid metabolism → therapeutic failure or toxicity	Avoid prodrugs; use direct-acting opioids	[33]
<i>DPYD</i>	5-Fluorouracil, Capecitabine	Severe fluoropyrimidine toxicity	Genotype-based dose reduction	[21]
<i>NAT2</i>	Isoniazid	Hepatotoxicity in slow acetylators	Adjust dose or monitor liver enzymes	[32]

Technological Enablers and Implementation Frameworks

Successful translation of PGx into practice depends on parallel advances in genomics technology, informatics, and policy infrastructure.

Next-Generation Sequencing (NGS) and Bioinformatics

NGS platforms provide high-throughput genotyping of hundreds of loci at declining cost [37]. Targeted PGx panels (e.g., *CYP2C19, CYP2D6, SLCO1B1, DPYD*) achieve > 99 % analytical accuracy and turnaround within 24 hours [38]. Bioinformatic tools such as GATK, PharmCAT, and PGxMine annotate variants and generate clinically interpretable reports integrated with guideline databases [39]. Population-specific allele frequency data—e.g., from the 100 000 Genomes Project—enable refinement of recommendations for diverse ethnicities [40].

Artificial Intelligence (AI) and Machine Learning

AI facilitates multidimensional analysis of genomic, clinical, and environmental variables. Deep-learning architectures can model nonlinear gene–drug interactions and predict pharmacological phenotypes [41]. Machine-learning–based drug-discovery pipelines now incorporate genomic biomarkers to prioritize compounds with favorable response profiles [42]. Integration of AI with pharmacogenomic datasets accelerates identification of novel therapeutic targets and informs adaptive clinical-trial design [43].

Electronic Health Records (EHRs) and Clinical Decision Support

Embedding PGx results within EHRs enhances point-of-care utilization. Clinical decision-support systems (CDSS) generate real-time alerts when prescribing drugs with known gene interactions, prompting dosage adjustment or alternative selection [44]. Vanderbilt University’s PREDICT initiative and the eMERGE network in the United States have demonstrated cost-effective scalability of such models [45]. Integration with national health systems, such as the UK Genomics England project, shows feasibility in population-level precision prescribing [46].

Pharmacogenomic Databases and Guideline Frameworks

Implementation is standardized through collaborative guideline consortia:

- **CPIC** (Clinical Pharmacogenetics Implementation Consortium) translates genotype data into actionable clinical recommendations [47].
- **PharmGKB** curates evidence linking genetic variants with therapeutic outcomes [48].
- **DPWG** (Dutch Pharmacogenetics Working Group) tailors dosing advice for European populations [49].

These repositories collectively ensure evidence harmonization, facilitate EHR integration, and underpin regulatory decisions [50].

Challenges, Ethical Issues, and Future Directions

Despite clear clinical potential, the widespread implementation of pharmacogenomics (PGx) and personalized medicine faces multiple scientific, infrastructural, and socioethical barriers.

Economic and Infrastructure Barriers

High testing costs and lack of reimbursement frameworks continue to limit PGx adoption, particularly in low- and middle-income countries (LMICs) [51]. Although genotyping costs have declined, many healthcare systems lack validated laboratory infrastructure, electronic integration, and certified personnel to interpret genomic data [52]. Cost-effectiveness analyses demonstrate long-term economic benefits when PGx testing prevents adverse drug events, but the initial investment remains a deterrent for many institutions [53]. Furthermore, inequitable access to sequencing technologies risks exacerbating global health disparities [54].

Clinical Education and Awareness

Clinical readiness is another limiting factor. Surveys across pharmacy and medical professionals show that fewer than half feel competent in interpreting or applying pharmacogenomic results [55]. Education on pharmacogenomics is still underrepresented in undergraduate curricula and continuing medical education programs [56]. Successful models—such as the St. Jude PG4KDS program and the PREDICT initiative—demonstrate how interprofessional training improves clinician confidence and uptake [57]. Integrating PGx content into pharmacy education can empower pharmacists to assume leadership roles in precision pharmacotherapy [58].

Ethical and Legal Considerations

Ethical dimensions of personalized medicine involve genetic privacy, data ownership, and potential discrimination based on genomic information [59]. The General Data Protection Regulation (GDPR) in Europe and the HIPAA Privacy Rule in the United States have attempted to standardize protections, yet challenges persist with cross-border data sharing and secondary use of genomic datasets [60]. Ensuring equitable participation of underrepresented populations in pharmacogenomic studies is vital for global applicability of findings [61]. Transparent patient consent processes and anonymized data handling frameworks are key ethical imperatives.

Scientific Challenges

Most currently actionable variants account for only a fraction of drug-response variability. Polygenic risk scores (PRS), combining multiple genomic markers, and multi-omics integration (genomics, transcriptomics, metabolomics, and microbiomics) promise a more holistic view of drug response. However, statistical heterogeneity, lack of standardization, and limited replication hinder clinical translation. Functional validation of candidate variants using CRISPR-Cas9 editing, 3D organoids, and organ-on-chip models offers new mechanistic insights into pharmacogenomic phenomena.

Future Perspectives

The future of personalized medicine lies in the integration of pharmacogenomics with digital health technologies. AI-driven predictive models embedded in electronic health records will provide real-time therapeutic recommendations. Collaborative efforts, such as the International 100K+ Pharmacogenomes Consortium, aim to establish global allele frequency databases and harmonize implementation standards. Pharmacists are poised to become frontline implementers of pharmacogenomics by mediating

between laboratory data and clinical decision-making. Their expertise in therapeutics, counseling, and medication management uniquely positions them to translate genetic data into actionable dosing and drug-selection strategies. Ultimately, the success of personalized pharmacotherapy will depend on multidisciplinary collaboration among genomic scientists, clinicians, pharmacists, policymakers, and patients to ensure equitable, evidence-based application of pharmacogenomic knowledge worldwide [60].

Table 2: Key Implementation Barriers and Potential Solutions for Pharmacogenomics

Challenge	Description	Potential Solution / Strategic Approach	Reference
Economic	High upfront cost of genotyping; lack of reimbursement models	Develop cost-effectiveness studies; include PGx testing in national formularies	[51], [53]
Infrastructure	Limited laboratory capacity and EHR integration	Create centralized PGx testing hubs; integrate with clinical decision-support systems	[52], [44]
Education	Limited clinician and pharmacist knowledge	Include PGx in pharmacy and medical curricula; continuing education programs	[55], [56]
Ethical / Legal	Concerns about data privacy, consent, and genetic discrimination	Implement GDPR-compliant governance; anonymized databases; informed consent	[59], [60]
Scientific	Limited validation of rare variants and polygenic interactions	Apply multi-omics and AI-driven predictive models; expand global biobanks	[61]
Equity / Access	Underrepresentation of minority populations in PGx research	Promote international collaborations and inclusive recruitment	[54], [61]

Conclusion

Pharmacogenomics has emerged as one of the most transformative innovations in modern pharmaceutical science, redefining the principles of drug therapy through the integration of genomic insights. By elucidating how genetic polymorphisms influence pharmacokinetics and pharmacodynamics, pharmacogenomics enables a shift from generalized prescribing to individualized, precision-based care. Clinical implementation in oncology, cardiology, psychiatry, and infectious disease has already demonstrated measurable improvements in therapeutic efficacy and safety. Despite this progress, global adoption remains uneven. Economic constraints, limited infrastructure, insufficient clinician training, and complex ethical issues surrounding genetic data continue to hinder universal integration. Furthermore, the current genomic markers explain only a fraction of drug-response variability, emphasizing the need for polygenic, multi-omic, and AI-integrated models to achieve more comprehensive predictive accuracy. Moving forward, the convergence of pharmacogenomics with digital health, machine learning, and systems biology will accelerate the realization of truly personalized medicine. Pharmacists—given their expertise in drug optimization and patient care—are uniquely positioned to lead this translational revolution. Continued collaboration among researchers, clinicians, regulators, and policymakers is essential to ensure equitable access, evidence-based implementation, and sustainable integration of pharmacogenomic testing in clinical practice.

Ultimately, pharmacogenomics represents more than a technological advancement—it embodies a paradigm shift toward patient-centered precision therapeutics, promising safer, more effective, and economically responsible pharmacotherapy for the global population.

References

1. Alomar MJ. Factors affecting the development of adverse drug reactions. *Saudi Pharm J*. 2014;22(2):83–94.
2. Relling MV, Evans WE. Pharmacogenomics in the clinic. *Nature*. 2015;526(7573):343–50.
3. Zhou Y, et al. Pharmacogenomics and precision medicine: progress and challenges. *Genes (Basel)*. 2024;15(4):468.
4. Ingelman-Sundberg M, et al. Human CYP450 polymorphisms and their clinical impact. *Pharmacol Ther*. 2023;245:108437.
5. Ashley EA. The precision medicine era: a paradigm shift in drug therapy. *Nat Rev Genet*. 2016;17(8):507–22.
6. Phillips KA, et al. Role of pharmacogenomics in reducing adverse drug events. *JAMA*. 2018;320(2):123–4.
7. Gaedigk A, et al. The CYP2D6 activity score: translating genotype information into clinical practice. *Clin Pharmacol Ther*. 2018;103(4):660–72.
8. Mega JL, et al. Cytochrome P-450 polymorphisms and response to clopidogrel. *N Engl J Med*. 2009;360(4):354–62.
9. Innocenti F, et al. Genetic variants in the UGT1A1 gene and irinotecan toxicity. *J Clin Oncol*. 2019;37(10):808–16.
10. Ramsey LB, et al. SLCO1B1 genetic variants and statin-induced myopathy. *Clin Pharmacol Ther*. 2019;106(2):360–7.
11. Brunham LR, et al. Personalized statin therapy guided by pharmacogenomics. *Nat Rev Cardiol*. 2020;17(3):145–56.
12. Tanwar SS, Dwivedi S, Khan S, et al. Cardiomyopathies and a brief insight into doxorubicin-induced cardiomyopathy. *Egypt Heart J*. 2025;77:29.
13. Mallal S, et al. HLA-B*57:01 screening for hypersensitivity to abacavir. *N Engl J Med*. 2008;358(6):568–79.
14. Sharma S, Kaur I, Dubey N, et al. Berberine as a potential therapeutic agent in Huntington's disease: mechanistic insight. *Mol Neurobiol*. 2025; 62:14734–62.
15. Moyer AM, et al. Epigenetic regulation of drug metabolism genes. *Clin Pharmacol Ther*. 2021;109(5):1151–62.
16. Pavan M, et al. Pharmaco-epigenomics in oncology. *Cancers (Basel)*. 2023;15(2):327.
17. Sadee W, et al. Pharmacogenomics: driving personalized medicine. *Pharmacol Res*. 2023;189:106704.
18. Moriyama T, et al. NUDT15 polymorphisms and thiopurine-associated toxicity. *Blood Adv*. 2021;5(3):699–707.
19. Meulendijks D, et al. DPYD variants and fluoropyrimidine-related toxicity. *J Clin Oncol*. 2022;40(2):152–64.
20. Gainor JF, et al. Genomic profiling in precision oncology. *Nat Rev Clin Oncol*. 2023;20(1):1–18.
21. Innocenti F, et al. UGT1A1 genotype-guided dosing of irinotecan. *Clin Cancer Res*. 2020;26(14):3489–97.

22. Pereira NL, et al. CYP2C19 genotype and clinical outcomes with antiplatelet therapy. *JAMA*. 2020;324(8):761–72.

23. Johnson JA, et al. Implementation of pharmacogenetics-guided warfarin dosing. *Clin Pharmacol Ther.* 2019;106(5):936–44.

24. Porcelli S, et al. Pharmacogenetics of antidepressant response: an update. *Eur Neuropsychopharmacol.* 2022;58:25–42.

25. Greden JF, et al. Meta-analysis of pharmacogenomic testing in depression. *J Affect Disord.* 2023;332:250–61.

26. Ge D, et al. Genetic variation in IL28B predicts hepatitis C treatment response. *Nat Genet.* 2020;52(2):210–8.

27. Azuma J, et al. NAT2 genotype and isoniazid-induced hepatotoxicity. *Clin Pharmacol Ther.* 2019;106(2):486–94.

28. Crews KR, et al. CPIC guideline for codeine and tramadol therapy. *Clin Pharmacol Ther.* 2021;110(4):919–26.

29. Matic M, et al. OPRM1 and COMT variants in opioid therapy. *Pharmacogenomics J.* 2022;22(3):167–77.

30. Rosenberg H, et al. Malignant hyperthermia and pharmacogenetics. *Br J Anaesth.* 2021;127(5):671–83.

31. Caudle KE, et al. Clinical Pharmacogenetics Implementation Consortium update 2023. *Clin Pharmacol Ther.* 2023;114(1):15–26.

32. Goodwin S, et al. Next-generation sequencing in pharmacogenomics. *Trends Biotechnol.* 2020;38(5):526–37.

33. Lee SS, et al. Validation of next-generation sequencing pharmacogenomic panels. *Front Pharmacol.* 2022;13:874352.

34. Klein TE, et al. PharmCAT: a pharmacogenomics clinical annotation tool. *Clin Pharmacol Ther.* 2021;110(4):888–95.

35. Turnbull C, et al. Insights from the 100,000 Genomes Project. *Nat Med.* 2022;28(3):680–9.

36. Xu H, et al. Machine learning applications in pharmacogenomics. *Brief Bioinform.* 2023;24(1):bbac435.

37. Tanwar SS, Sharma S. Modulatory role of traditional Chinese medicine in MASLD. *Pharmacol Res Mod Chin Med.* 2026;18:100743.

38. Kim S, et al. Integrative AI-omics approaches in drug response. *Front Genet.* 2024;15:1402761.

39. Peterson JF, et al. Integration of pharmacogenomics into electronic health records. *Clin Pharmacol Ther.* 2021;109(4):1018–27.

40. Pulley JM, et al. Vanderbilt PREDICT pharmacogenomics program update. *Clin Pharmacol Ther.* 2020;107(1):102–10.

41. Davies SC, et al. Implementing pharmacogenomics in the NHS. *Pharmacogenomics J.* 2024;24(1):12–25.

42. Relling MV, et al. Ten years of CPIC guidelines. *Clin Pharmacol Ther.* 2020;107(1):171–5.

43. Whirl-Carrillo M, et al. PharmGKB knowledgebase update 2023. *Clin Pharmacol Ther.* 2023;114(3):695–707.

44. Swen JJ, et al. Dutch Pharmacogenetics Working Group guideline update 2022. *Clin Pharmacol Ther.* 2022;112(5):949–57.

45. Caudle KE, et al. Harmonization of pharmacogenomics implementation. *Clin Transl Sci.* 2024;17(2):e890.

46. Verbelen M, et al. Cost-effectiveness of pharmacogenomic testing. *Genet Med.* 2021;23(11):2242–52.

47. Alimohamed MZ, et al. Health-system readiness for pharmacogenomics. *Nat Commun Med.* 2025;1(2):34.

48. Stanek EJ, et al. Economic outcomes of pharmacogenomics programs. *Pharmacogenomics J.* 2020;20(5):629–40.

49. Owusu-Obeng A, et al. Equity in pharmacogenomics implementation. *Pharmacogenomics J.* 2023;23(2):153–65.

50. Rahma AT, et al. Clinician knowledge gaps in pharmacogenomics. *BMC Med Educ.* 2021;21:472.

51. Kisor DF, et al. Pharmacogenomics education in pharmacy curricula. *Am J Pharm Educ.* 2020;84(6):ajpe7865.

52. Dunnenberger HM, et al. St Jude PG4KDS clinical implementation experience. *Genet Med.* 2022;24(5):1078–88.

53. McLachlan AJ, et al. Pharmacists' roles in precision medicine. *Br J Clin Pharmacol.* 2023;89(4):1127–38.

54. Gurwitz D, et al. Pharmacists as leaders in pharmacogenomics. *Pharmacogenomics J.* 2022;22(4):323–30.

55. Kaye J, et al. Data governance in genomic research. *Nat Rev Genet.* 2020;21(7):415–26.

56. Bentley AR, et al. Diversity in pharmacogenomic research. *Nat Genet.* 2020;52(9):821–9.

57. Middleton A, et al. Global perspectives on genetic data privacy. *Eur J Hum Genet.* 2021;29(7):1058–68.

58. Torkamani A, et al. Polygenic risk scores in precision medicine. *Nat Rev Genet.* 2018;19(9):581–90.

59. Lewis CM, et al. Challenges in clinical translation of polygenic risk scores. *Nat Rev Genet.* 2022;23(9):567–85.

60. Park J, et al. CRISPR and organoid models in pharmacogenomics. *Trends Pharmacol Sci.* 2024;45(2):115–30.

61. Banerjee O, et al. AI-driven digital health in pharmacogenomics. *NPJ Digit Med.* 2023;6(1):45.

Source of support: Nil, Conflict of interest: None Declared