Antinephrotic potential of CATCAB-50 in CCl₄ induced glomerulonephritic animal

Harikesh Maurya*, Tirath Kumar

Department of Pharmaceutical Sciences, Kumaun University, Bhimtal Campus, Bhimtal, Nainital, Uttarakhand, India

ARTICLE INFO:

Article history:
Received: 20 May, 2016
Received in revised form: 10 June, 2016
Accepted: 20 June, 2016
Available online: 30 June, 2016

Keywords:
Glomerulonephritis
C. papaya
A. officinalis
T. cordifolia
C. pareira
B. diffusa

ABSTRACT

Objective: Present study was designed to evaluate antinephrotic potential of CATCAB-50 in CCl₄ induced glomerulonephritis (GN) in Wistar rats. Methods: The poly herbal formulation CATCAB-50 has contained fresh dried root extract of six medicinal herbs i.e. Carica papaya, Angelica officinalis, Tinospora cordifolia, Cissampelos pareira, Achyranthes aspera and Boerhavia diffusa, which was scientifically validated for the management of GN. The antinephrotic potential was evaluated in pre-treating group of rats with dose of 50mg/kg b.w. of CATCAB aqueous extract for 10 days in respect to carbon tetrachloride (CCl₄ 1.5ml/kg b.w.) induced GN. Result: The aqueous extract of CATCAB-50 on hematological and biochemical parameters for its pharmacological screening of all groups were measured using standard procedures. Histological studies of rat kidney of all experimental group animals were also completed for its confirmation. Results showed that intraperitoneal injection of CCl₄ induced, significant (p<0.05) elevation in the hematological parameter and urine levels of total protein, uric acid, urea and creatinine. Conclusion: However, elevated biochemical parameters were significantly (p<0.05) attenuated in rats pre-treated with CATCAB-50, could be mediated by any of the phytocomponents present in it via either antioxidant and/or free radical scavenging mechanism.

1. Introduction

Glomerulonephritis (GN) is a group of diseases that injure the part of the kidney, founded a serious illness which requires immediate treatment. Many herbs represent nature's main storehouse of raw materials for the management of various renal disorders[1]. As conquer of kidney function leads to kidney failure, several patients almost immediately dependent on hemodialysis, and most of them don’t afford the treatment cost while undergoing regular dialysis[2]. The earlier stages of kidney failure patients are exceedingly at risk of drug complications were seen in a community setting, about 10% of patients with renal insufficiency (serum creatinine >1.5 mg/dl) experienced a drug-related adverse event, with greater than one-half of these proceedings considered serious and 4.5% of the events found life-threatening, departed for kidney transplantation[3]. The large number of affected patients even though costs concerned and distressing consequences of medication-related problems like prolong hospitalization, dialysis even organ transplantation etc. presently it is known about the impact of renal impairment on drug disposition, including those drugs eliminated primarily by hepatic pathways play critical role for worsen conditions[4].

The kidney is a comprehensively important organ when it comes to the prognostic evaluation of the safety, efficacy and toxicity of drugs and non-drug chemicals[5]. It is necessary to majored the hematological as well as urological investigations including renal drug clearance during diagnostic confirmation and making goals for the management of these critical condition to early avoiding organ failure which leads to life threatening[6].

The prepared poly herbal formulation CATCAB-50 consist of six major well reported herbs for the management of GN i.e. C. papaya, A. officinalis, T. cordifolia, C. pareira, A. aspera & B. Diffusa (see table 1). The present study was designed to evaluate the protective effect of CATCAB-50 against CCl₄ induced GN in rats[7]. Several studies reported that, the antioxidant and free radical scavenging activity of these herbs shows similar action in renal collapses[8]. Also it was reported that, all these herbs are well known for the same action due to the presence of their chemical constituents such as flavonoids and poly phenolic compounds[9]. The extent of the protective effect was determined by studying serum and urine toxicity markers with histopathology of kidney tissues[10].

2. Materials and methods

2.1. Plant collection and authentication

Fresh dried root parts of these plants were collected from the Himalayan region of Uttarakhand, India[16] and were.
Table No. 1: Description of medicinal plants possessing anti-GN activity

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Scientific Name (Family)</th>
<th>Part</th>
<th>Dose</th>
<th>Activities</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Angelica officinalis (Umbelliferae)</td>
<td></td>
<td></td>
<td>Stimulates kidney action</td>
<td>[12]</td>
</tr>
<tr>
<td>3.</td>
<td>Tinospora cordifolia (Menispermaceae)</td>
<td></td>
<td></td>
<td>anti-inflammatory, Antioxidant</td>
<td>[13]</td>
</tr>
<tr>
<td>4.</td>
<td>Cissampelos pareira (Menispermaceae)</td>
<td></td>
<td></td>
<td>Anti-Inflammatory, Antioxidant, Diuretic</td>
<td>[14]</td>
</tr>
</tbody>
</table>

Body weight was recorded on the first day and then last day of the study period in each group.

2.5.2. Blood & urine profile

Creatinine, total protein, urea, uric acid levels along with SGOT, SGPT, total bilirubin in blood and same parameter in urine sample along with 24 hours urinary volume were determined by using commercial glucometer kit at the end of experiment.

2.5.3. Histological analysis

Kidney tissues were obtained on the last day after scarification of animals and immediately fixed in 10% buffered neutral formalin solution. The tissue section was stained with hematoxylin and eosin (H & E stain) and examined under light microscope.

2.6. Statistical analysis

All the data were expressed as Mean±S.E.M. followed by one way ANOVA and Tukey’s multiple comparison tests. p≥0.05 represents statistical significance and p≤0.001 represents statistical significance against control group.

3. Results

3.1. Body weight

CCL\textsubscript{4} treated rat showed a slight decrease in body weight (160g) compared to control rat (200g), while the CATCAB-50 treatment animals showed significantly increased in body weight (185g) as compared to CCL\textsubscript{4} treated rat.

3.2. Estimations of blood profile

Carbon tetrachloride (CCL\textsubscript{4}) treated rats showed significant (\( p \leq 0.05 \)) increase in levels of total protein, urea, uric acid and creatinine along with SGOT, SGPT & total bilirubin in blood as compared to control group of animals. While pretreatment with CATCAB-50 significantly (\( p \leq 0.001 \)) maintain the elevated levels of these parameters as compared to CCL\textsubscript{4} treated rats (table 2 & table 3).
Table No. 2: The effect of CATCAB-50 on serum profile in CCl\textsubscript{4} induced GN in rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Urea (mg/dL)</th>
<th>Uric acid (mg/dL)</th>
<th>Creatinine (mg/dL)</th>
<th>Total protein (g/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>18.45 ± 0.18</td>
<td>2.05 ± 0.10</td>
<td>0.72 ± 0.03</td>
<td>8.44 ± 0.20</td>
</tr>
<tr>
<td>CCl\textsubscript{4}</td>
<td>42.48 ± 0.23yd</td>
<td>6.42 ± 0.12y</td>
<td>2.15 ± 0.06y</td>
<td>2.35 ± 0.06y</td>
</tr>
<tr>
<td>CATCAB-50+CCl\textsubscript{4}</td>
<td>22.37 ± 0.25y**</td>
<td>3.00 ± 0.04**</td>
<td>0.88 ± 0.11</td>
<td>7.68 ± 0.08**</td>
</tr>
</tbody>
</table>

Values are given as mean ± SEM and expressed in mg/dL for groups of six animal in each. y\textsuperscript{p}≤0.05 denotes when disease control was compared with the normal control and y\textsuperscript{p}≤0.001 denotes when treatment group was compared with the normal control.

Table No. 3: The effect of CATCAB-50 of serum marker enzymes in CCl\textsubscript{4} induced GN in rats

<table>
<thead>
<tr>
<th>Group</th>
<th>SGPT (U/L)</th>
<th>SGOT (U/L)</th>
<th>Total bilirubin (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>58.64 ± 1.25</td>
<td>142.87 ± 3.05</td>
<td>0.18 ± 0.03</td>
</tr>
<tr>
<td>CCl\textsubscript{4}</td>
<td>87.32 ± 2.10y</td>
<td>202.58 ± 2.87y</td>
<td>0.22 ± 0.04y</td>
</tr>
<tr>
<td>CATCAB-50+CCl\textsubscript{4}</td>
<td>62.48 ± 2.45y**</td>
<td>148.23 ± 3.02y**</td>
<td>0.20 ± 0.05y**</td>
</tr>
</tbody>
</table>

Values are given as mean ± SEM and expressed in mg/dL for groups of six animal in each. y\textsuperscript{p}≥0.05 denotes when disease control was compared with the normal control and y\textsuperscript{p}≤0.001 denotes when treatment group was compared with the normal control.

3.3. Estimations of urine profile

Carbon tetra chloride (CCl\textsubscript{4}) treated rats showed significant (\textsuperscript{p}≤0.05) increase in levels of total protein, urea, uric acid and creatinine in urine as compared to control group along with estimation of 24 hours urinary volume of all groups. While pretreatment with CATCAB-50 significantly (\textsuperscript{p}≤0.001) maintain the elevated levels of these parameters as compared to CCl\textsubscript{4} treated rats (table 4). The estimation of 24 hours urinary volume also shows significant maintenance in urinary volume in CATCAB-50 treatment group (table 5) in comparison to other groups.

Table No. 4: The effect of CATCAB-50 on urine profile in CCl\textsubscript{4} induced GN in rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Urea (mg/dL)</th>
<th>Uric acid (mg/dL)</th>
<th>Creatinine (mg/dL)</th>
<th>Total protein (g/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>28.52 ± 1.32</td>
<td>4.08 ± 0.05</td>
<td>5.35 ± 0.26</td>
<td>41.8 ± 1.05</td>
</tr>
<tr>
<td>CCl\textsubscript{4}</td>
<td>56.05 ± 3.41y</td>
<td>9.43 ± 0.08y</td>
<td>11.0 ± 0.04y</td>
<td>80.6 ± 3.02y</td>
</tr>
<tr>
<td>CATCAB-50+CCl\textsubscript{4}</td>
<td>30.30 ± 1.22y*</td>
<td>3.85 ± 0.35y**</td>
<td>4.50 ± 0.10y**</td>
<td>46.2 ± 0.90y**</td>
</tr>
</tbody>
</table>

Values are given as mean ± SEM and expressed in ml for groups of six animal in each. y\textsuperscript{p}≥0.05 denotes when disease control was compared with the normal control and y\textsuperscript{p}≤0.001 denotes when treatment group was compared with the normal control.

Table No. 5: Estimation of 24 hours urinary volume of all experimental group animals

<table>
<thead>
<tr>
<th>Group</th>
<th>24 hours urinary volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (ml)</td>
</tr>
<tr>
<td>Control</td>
<td>17.50 ± 0.35</td>
</tr>
<tr>
<td>CCl\textsubscript{4}</td>
<td>37.25 ± 2.00y</td>
</tr>
<tr>
<td>CATCAB-50+CCl\textsubscript{4}</td>
<td>27.20 ± 2.60y**</td>
</tr>
</tbody>
</table>

Values are given as mean ± SEM and expressed in ml for groups of six animal in each. y\textsuperscript{p}≥0.05 denotes when disease control was compared with the normal control and y\textsuperscript{p}≤0.001 denotes when treatment group was compared with the normal control.

The urine sample was also taken every alternative day after treatment with CCl\textsubscript{4} and CATCAB-50+CCl\textsubscript{4} respectively. The result showed significant improvement in urine color on each sample collection (figure 1).

Figure No. 1: Urine sample were collected at every alternate day in the volumetric flask and took only 10 ml for analysis as shown under; (A) CCl\textsubscript{4}, (B) CATCAB-50+CCl\textsubscript{4}
3.4. Histological studies

Isolated kidney were quickly dipped into 4% paraformaldehyde then embedded in paraffin. Sample sections (1 µm) of the tissue were stained by Mallory and viewed using a light microscope with a computer-assisted analyzer. Histological changes such as cortical glomerular, peritubular blood vessels congestion, and interstitial inflammation etc. were observed in the CCl₄ and CATCAB-50 + CCl₄ group (figure 2).

![Histological appearance of kidney](image)

Figure No. 2: Histological appearance of kidney shown as under; (A). Control group, (B). CCl₄ treated, (C). CATCAB-50 + CCl₄

4. Discussion

The herbal plant has been used from ancient time to manage the human ailments without adversely influencing to the body and/or living organs. Kidneys are such vital organ, which is highly influenced by chemical and other synthetics drugs. Current therapies to remove uremic solutes for the renal disorders patient include peritoneal dialysis, hemodialysis, and kidney transplantation, which is costly and time-consuming regimen, and also linked to high morbidity. These types of treatments are predominantly available in developed countries, and therefore patients in developed countries are more likely to have an extended life expectancy. In underdeveloped countries, uremia is generally untreated and patients appear to have a lower life expectancy.

The present study, designed with six medicinal plants possessing antinephrotic activity used to maintain uremic solutes like; uric acid, urea, creatinine protein etc. in CCl₄ induced GN in Wistar rats. The poly herbal formulation has been developed by using geometrical dilution method and administered in animal at a dose of 50mg/kg body weight. The pretreatment administration of the drug showed the stun result to maintain the elevated parameter in nephritic rats within very short duration of time.

Our data also indicate that the serum profile in CCl₄ induced GN in rats shows that urea (22.37mg/dl), uric acid (3.00mg/dl), creatinine (0.88mg/dl) and protein (7.68mg/dl) content was observed in treatment group, which was more significant in comparison with disease control group. The constant improvement result was observed in serum biomarkers enzymes like SGPT, SGOT and bilirubin at the end of the study. Simple calculations based on the volume of urine from experimental animals and the difference between uremic and normal rats of 24 h urinary volume estimating that about 15–18 ml of urine per day must be observed with improvements in urine colour.

Our data suggest that the histopathology of the kidney clearly confirms its remodeling and vigorous glomerular capillaries. Our data also proposed that the herbal formulation will prove beneficial to rats suffering from any degree of renal insufficiency.

5. Conclusion

The present study suggests that CATCAB-50 provides adequate protection against CCl₄ induced GN as evidenced by body weight, biochemical and histological parameters. The protective effect of CATCAB-50 may be due to its antioxidant potential and/or free radical scavenging mechanism of these herbs which shows a synergistic effect on restoring kidney function. However, further studies are needed to confirm it’s a clear mechanism of action on GN and to characterize the phyto constituents responsible for its action on kidney.

Acknowledgements

We are thankful to the Director of Dept. of Pharmaceutical Science, Bhimtal Campus, Kumaun University, Nainital, India for providing necessary facilities to carry out this research work. There are no any source of financial support, gifts, technical assistance and advice received for the work being published by any agency. All the authors have no conflict of interest for the publication of this manuscript in journal.

References


Olagunju JA., Adeneye AA., Fagbohunka BS., Bisuga NA., Nephroprotective activities of the aqueous seed extract of *Carica papaya* linn. in carbon tetrachloride induced renal injured wistar rats: a dose and time-dependent study, Biology and medicine 2009; 1(1): 11-9.


**Conflict of interest: None Declared**

All © 2016 are reserved by International Journal of Pharmaceutical and Medicinal Research

www.ijpmr.org